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Abstract. This year Leslie VALIANT becomes sixty five years old; we cele-
brate his fest with this work in which we analyze some of his major achieve-
ments. We focus our attention on those of his works for which a strong
influence of Volker Strassen can be easily detected. Strassen’s work has had a
strong and lasting influence on Valiant. It does not means, as the title could
suggest, that the manyfaced, relevant and complex work of Leslie Valiant can
be understood as a corollary to Strassen.
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La obra de Leslie Valiant

Resumen. Este año Leslie VALIANT cumple 65 años y nosotros queremos
celebrar este importante aniversario con este trabajo en el que se analiza su
obra. Centramos nuestra atención en aquellos de sus trabajos en los que una
clara influencia de Volker STRASSEN puede ser detectada. Es patente la
influencia de Strassen en la obra de Valiant, pero esto no quiere decir que el
trabajo de Valiant, complejo y multifacético, sea un simple corolario a la obra
del primero.
Palabras clave: Complejidad, algoritmos, análisis sintáctico, algoritmos para
matrices.

Valiant is sixty five

We survey the work of Leslie Gabriel VALIANT (born 28 March 1949), one of the most
influential theorist within the computer science milieu. Valiant got the Nevalina Medal
in 1986 because of his many (early) contributions to computer science. The Nevalina
Medal is the Field Medal of computer science. One important feature of Valiant’s work,
besides its depth, is its visionary character:
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He created, from scratch, Counting Complexity: He introduced the class #P and
the notion of #P-completeness [37, 38] which allows us to explain, to some extent,
why most enumeration problems are intractable.

He was one of the pioneers of randomized complexity, publishing an influential paper
in the field as early as 1977 [1].

He was one of the creators of machine learning, a theory that found its first formal
ground on Valiant’s probably approximately correct (PAC) model [24].

He introduced one of the first sound theoretical models of parallel computing ma-
chine [40].

He introduced the notions of superconcentrator and matrix rigidity, and the concept
of holographic algorithms.

He discovered, while a Ph.D. student, an algorithm for context-free language recog-
nition, which is still the asymptotically fastest known [34].

Leslie Valiant received the Nevalina Prize in 1986, the Knuth Prize in 1997, the EATCS
Award in 2008 and the ACM Turing Award in 2010 (the Nobel Prize of computer science).
He is one of the most influential computer scientists, his work spans several areas of theory
and it makes it hard to present a panoramic view of that work. We focus our attention
on some few works of Valiant. The choice of the topics is related to the title of this work:
We focus our attention on those works of Valiant that are closely related to Strassen’s
work.

Volker STRASSEN (1936, Düsseldorf-Gerresheim) is an influential German computer
scientist. He was awarded the Cantor Medal, the Paris Kanellakis Award and the Knuth
Prize (which is aimed to honor the whole work of a computer scientist because of its
deep and lasting influence on the development of the field). In despite of this we will
not study the work of Volker Strassen; instead, we will concentrate on the influence of
Strassen’s work on the mathematical development of Leslie Valiant.

Strassen career is crowned by many important achievements:

Strassen discovered, jointly with Arnold Schönhage [27], an algorithm for integer
multiplication based on the fast Fourier transform, which was the fastest known
till the discovering of Fürer’s algorithm in 2007 [10].

Strassen discovered the first polynomial time randomized algorithm for the recog-
nition of prime numbers (jointly with Robert Solovay) [28]; this achievement of
Strassen gained the attention of the algorithm-community towards the revolution-
ary concept (shaped by his work) of probabilistic algorithm.

He discovered the first subcubic algorithm for the multiplication of integer matrices
[26]; this work of Strassen (one of his earliest works) has had, as we will see, a strong
influence on Valiant’s work.
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Those three breakthroughs launched the development of algebraic complexity, a subfield
of complexity theory aimed to investigate the algorithmic hardness of algebraic compu-
tations.

Volker Strassen got his Ph.D. from Göttingen University in 1962 working under the
supervision of Konrad Jakobs. His first works are concerned with probability theory and
statistics (see [29]). He moved in the early sixties to Berkeley University and went back
to Germany in 1966, where he obtained the Venia Legendi from Erlangen University,
working again under the supervision of Jakobs. Then, he accepted a call from Zürich
University, where he switched to algebraic complexity. In 1969 he published his first
major result in this new field, a short but very influential paper [26], where he was
able to prove that, in despite of the conventional wisdom, gaussian elimination is not
optimal: He discovered an algorithm for matrix inversion which is asymptotically faster
than gaussian elimination.

Outline of the paper. This paper is organized into four sections: The first one surveys
the work of Volker Strassen. The other three sections are related to three stages of
Valiant’s career: the beginning (the doctoral thesis), the summit (represented by the
Nevalina prize), and his later works.

Remark 1. Some of the material included in this work is conjectural.

1. Volker STRASSEN: The birth of Algebraic Complexity

Strassen said once (see [30]), that he found lower bounds more interesting than algo-
rithms (influenced as he was by Gödel’s theorem). Strassen began, after the publication
of [26], a systematic search for lower bounds related to algebraic computations. By the
time complexity theory did not exist (we have to wait until 1971, when Cook published
his historical paper [3]), given that there was not, among other things, a clear answer to
the following question: How can one measure the complexity of general computations?
The specific subfield of algebraic complexity had experienced an earlier development,
given that there was (and there is) a natural measure of complexity for algebraic compu-
tations over rings: the number of algebraic operations that must be performed along the
computation. Thus, there did not exist a general framework to deal with lower bounds
and because of this Strassen had to focus his attention on practical complexity [30], that
is, Algebraic complexity.

Strassen is considered the creator of algebraic complexity, but it should be clear that there
were some antecedents. Perhaps, the first published work aimed to analyze the number
of operations that should be performed in order to solve a given algebraic problem is a
paper of Alexander Ostrowski [20]. Ostrowski proved, in that paper, that Horner’s rule
is optimal. To this end he had to introduce the computational model of straight-line
programs, which has became the main tool in the analysis of algebraic computations over
rings.

Let R be a ring and let f : Rn → R be a function. A straight-line program for
f (X1, ..., Xn) is a sequence of instructions, say R1, ..., Rt, such that for all i ≤ t, Ri

the ith instruction, it has the form

vi ← yi1 ◦ y
i
2,
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where, for given k = 1, 2 we have that either yik = vj for some j � i or yik = Xs for some
s ≤ n, or yik is a scalar (that is: yik is an element of R). Furthermore, we have that ◦
belongs to {+,−,×} . The output of the straight-line program R1, ..., Rt is the value of
vt.

Straight-line programs constitute a nonuniform model of computation (it means that we
need a different program for each input size) which can be used to measure the amount of
algebraic operations that must be performed in order to solve a given algebraic problem.
Consider the following problem:

Problem 1.1. (UNIEV AL: Evaluation of univariate polynomials).

Input:

(
∑

i≤n

aiX
i, c

)

, where a0, ..., an, c ∈ R.

Problem: compute
∑

i≤n

aic
i.

The size of the input

(
∑

i≤n

aiX
i, c

)

is equal to n, which is the degree of the poly-

nomial
∑

i≤n

aiX
i. If we fix a positive integer n, we can use a straight-line program

Rn = R
(n)
1 , ..., R

(n)
tn

to evaluate any pair

(
∑

i≤n

aiX
i, c

)

. But given n �= m and given
(

∑

i≤n

aiX
i, c

)

,

(
∑

i≤m

biX
i, d

)

, two instances of UNIEV AL of different size, we need

two different straight-line programs to evaluate those inputs. Also, if we want to an-
alyze the algebraic complexity of the problem UNIEV AL by means of the model of
straight-line programs, we have to consider sequences (Rn)n≥1 where, for each n ≥ 1,
Rn is a straight-line program. Let (Rn)n≥1 be one of such sequences, and suppose that

Rn = R
(n)
1 , ..., R

(n)
tn

. The running time of the sequence (of the algorithm encoded by this
sequence) is given by the function

n �→ tn.

Employing such an algorithm on an input of size n requires the computation of tn alge-
braic operations. Let Rn = R

(n)
1 , ..., R

(n)
tn

and let R+
n and R×

n be the sets

R+
n =

{
i ≤ tn : R

(n)
i is equal to vi ← yi1 ◦ y

i
2 and ◦ belongs to {+,−}

}
,

R×

n =
{
i ≤ tn : R

(n)
i is equal to vi ← yi1 ◦ y

i
2 and ◦ is equal to ×

}
.

If one wants to distinguish between the number of multiplications required by the algo-
rithm and the number of additions, one can define two different running time functions.
Let t+n = |R+

n | and let t×n = |R×

n | . Notice that tn ≥ t+n + t×n . We define the +-running
time of (Rn)n≥1 as

n �→ t+n .
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and the ×-running time accordingly.

It is easy to figure out a sequence (scheme) (Rn)n≥1 of straight-line programs, computing
the problem UNIEV AL and such that for all n the equations

t+n = n and t×n =
n (n+ 1)

2

hold. Such an scheme corresponds to the naive evaluation of polynomials (the n + 1
monomials are computed independently and then they are added from left to right). Can
we do better? Naive algorithms are, most of the time, not optimal. Also, there must exist
much better algorithms (straight-line schemes) solving the problem UNIEV AL. In 1819
William George Horner [13] described an algorithm (a straight-line scheme) which can
be used to solve the problem UNIEV AL. The +-running time and the ×-running time
of Horner’s scheme are equal to n. Horner’s Scheme corresponds to write the polynomial∑

i≤n

aiX
i (the polynomial to be evaluated) as

a0 +X (a1 +X (a2 + ...X (an−1 +Xan))) .

Computation starts with the innermost parentheses using the coefficients of the highest
degree monomials and works outward, each time multiplying the previous result by and
adding the coefficient of the monomial of the next lower degree. Alexander Ostrowski
posed the question of whether any other method of computing p (X) could use fewer
operations. He proved that n additions are necessary [20]. V. Pan proved, in 1964,
that n multiplications are necessary [22]. Thus, Horner’s scheme is optimal. Notice that
the elementary model of straight-line programs allowed us to analyze the algorithmic
complexity of a typical (an ubiquitous) algebraic task: the evaluation of real polynomials.
Furthermore, an optimality result was obtained (which is very rare).

The paper [20] could be considered the first published paper in algebraic complexity.
Soon after that Strassen began to publish his works on those topics, giving the theory a
definitive form.

We trace the influence of Strassen’s work on some of the theoretical developments
achieved by Valiant. We will observe, along the paper, that Strassen’s matrix multi-
plication algorithm had a depth and lasting influence on Valiant. We will also observe
that a theoretical development (like the one by Strassen) targeted to deal with a very
specific problem, can have a strong influence on the development of areas of theory that
are not linked to it.

2. The Beginning: A doctoral thesis

Leslie G. Valiant made his doctoral studies at Warwick under the supervision of Mike
Paterson. His dissertation studies a special class of context-free languages that prop-
erly contains the class of deterministic context-free languages. He was interested in the
development of decision algorithms for Deterministic Finite-Turn Pushdown Automata
[33].

It was around 1971, the year at which Steven Cook published his historical paper [3]
(where the class NP and the notion of NP completeness were introduced), when Valiant
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entered the doctoral program in Mathematics and Computer Science at Warwick. Valiant
was interested in context-free languages, parsing problems and decision procedures for
formal languages. There was not, by this time, a theoretical framework for the complexity
analysis of this kind of problems. The model of straight-line programs and the theoretical
developments contained in the already published work of Strassen were tailor-made to
deal with a very different class of problems. One can identify the birth of Complexity
Theory with the publishing of Cook’s paper. Off course, there were many antecedents.
In 1936 Alan Turing introduced the model of Turing machines [32], which allowed the
formalization of the notion of algorithm. In the sixties, Hartmanis and Stearns (see [11])
settled the basis of algorithm analysis: they showed that the model of Turing machines
could be used to measure the efficiency of general algorithms. Then, people began to
analyze algorithms and, as consequence, to look for efficient algorithms solving important
computational tasks; the concept of lower bound was in the air.

Noam Chomsky introduced, in the fifties, context-free grammars and context free lan-
guages as toy models of generative grammars [6]. Chomsky was a linguist interested in the
study of natural languages, but his concept of context-free grammar became functional
in the development of programming languages. Programming languages are artificial
languages with a syntax and a grammar, most of those grammars are context-free. If
a language is context-free it holds a context-free grammar which is a succinct code of
the whole language and which can be employed to recognize it. Given a context-free
grammar G, the recognition problem for G is the problem defined by:

Problem 2.1. RL (G) : Recognizing L (G).

Input: α, where α is a expression (a string of characters).

Problem: decide if α belongs to L (G) .

Remark 2. We use the symbol L (G) to denote the language generated by G.

The problem RL (G) can be solved employing a suitable pushdown automaton [12]. It is
a sound algorithmic solution, but it could be an unfeasible one given that there is not an
uniform upperbound on the running time of nondeterministic pushdown automata. Peo-
ple working in the theory of programming languages was interested in the development
of efficient algorithms for the recognition of context-free languages. The first important
achievements were obtained, in the early sixties, by Earley [9] and Kasami [17], who
discovered recognition algorithms that run in time O

(
n3

)
. The study of context-free

recognition algorithms and context-free parsers was a hot topic in those days and it is
not hard to understand why Valiant, being Ph.D student, was interested in those issues.

Valiant’s advisor, Mike Paterson, got his Ph.D in 1967 from Cambridge University; his
thesis was entitled Equivalence Problems in a Model of Computation. Notice the simi-
larity between the topics studied in Paterson’s thesis and the topics studied in Valiant’s
thesis. The advisor of Paterson, David Michael Ritchie Park, was an student of Hartley
Rogers and Alonso Church. Thus, he was a typical exponent of computability (recursion)
theory, the mathematics of computation studied in England by the time. After obtaining
his Ph.D. Paterson went to MIT, where he spent three years developing join work with
Ian Munro and Larry Stockmeyer. This work was related to the efficient evaluation of
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polynomials and other algebraic functions [19, 21]. Thus, Paterson discovered at MIT
the flourishing field of algebraic complexity. It can be conjectured that Paterson discov-
ered Strassen’s algorithm for the multiplication of square matrices with integer entries
around this time [26]. And it can also be conjectured that Paterson, when he was back
at Warwick, pointed out to Valiant the relevance of Strassen’s work. Although Strassen’s
algorithm was not clearly linked to the work of Valiant, he discovered an unexpected con-
nection of Strassen’s work with his own work: Valiant discovered that he could employ
Strassen’s algorithm to design a subcubic context-free recognition algorithm [34]. The
discovery of the first subcubic context-free recognition algorithm, indebted to Valiant,
can be considered as the first breakthrough in his career.

2.1. Strassen Algorithm

Strassen algorithm allows one to compute the product of two integer matrices of order
n in time O

(
nlog2(7)

)
. The running time of the naive integer matrix multiplication

algorithm is O
(
n3

)
. Strassen discovered the first subcubic integer matrix multiplication

algorithm [26]. After Strassen many other subcubic algorithms have been discovered,
some of them exhibiting a better performance than Strassen algorithm. The current
O

(
nk

)
integer matrix multiplication algorithm with the lowest known exponent k is the

Coppersmith–Winograd algorithm1. It was presented by Don Coppersmith and Shmuel
Winograd in 1990, and it has an asymptotic complexity of O(n2.376) [5].

Remark 3. It can be easily shown that there not exists a O
(
nk

)
integer matrix multi-

plication algorithm with k strictly lesser than 2.

If one tries to multiply two integer matrices of order n using the naive multiplication
algorithm (using the definition of matrix product), one has to compute n3 integer mul-
tiplications. The computation of integer multiplications is the most expensive operation
to be made, and then, it makes sense to measure the running time of an integer matrix
multiplication algorithm in terms of the number of integer multiplications computed by
it. Strassen discovered a procedure which allows one to compute the product of two inte-
ger matrices of order n, computing at most O

(
nlog2(7)

)
integer multiplications. Strassen

algorithm is based on the following fact:

Let A =

[
A11 A12

A21 A22

]

, B =

[
B11 B12

B21 B22

]

be two 2 × 2 matrices and let C =

1Very recently (November 2011), Virginia Vassilevska and Andrew Stothers announced the discovery
of matrix multiplication algorithms beating the Coopersmith-Winograd Algorithm. Those works have
not been published, although most of the work of Stothers is included in his Ph.D thesis published in
2010; the work of V. Vassilevska was presented at STOC 2012 [46].
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[
C11 C12

C21 C22

]

be its product. Strassen wrote down seven equations:

I = (A11 +A22) (B11 +B22) ,

II = (A21 +A22)B11,

III = A11 (B12 −B22) ,

IV = A22 (−B11 +B21) ,

V = (A11 +A12)B22,

VI = (−A11 +A21) (B11 +B22) ,

VII = (A12 −A22) (B21 +B22) ,

and he noted that

C11 = I + IV − V + VII,

C21 = II + IV,

C12 = III + V,

C22 = I + III − II + VI.

Notice that the above equations allow one to compute the matrix C computing no more
than 7 matrix multiplications. And notice that the above equalities hold if the entries
of A and B are square matrices. Given n ≥ 1, given A,B two matrices of order n

and given m such that n ≤ 2m ≤ 2n one can deal with those two matrices as if they
were matrices of order 2m. Then, one can reduce the multiplication of A and B to
the multiplication of a series of 2 × 2 matrices whose entries are blocks (submatrices).
If one uses Strassen’s equations at each stage, one can reduce the number of integer
multiplications to O

(
nlog2(7)

)
. Thus, Strassen algorithm can be used to compute in time

O
(
nlog2(7)

)
the product of two n× n matrices.

It should be noted that Strassen’s algorithm can be adapted to obtain subcubic algo-
rithms for matrix inversion and for the computation of determinants. Therefore, we have
that Strassen algorithm beats The Gaussian Elimination Algorithm which is a cubic
algorithm.

Where do Strassen equations come from? How could Strassen discover those striking
equations? Legend says that Strassen was trying to prove that Gaussian elimination is
optimal, then he began to work hard on the order-two case, and while he was trying
to prove that the multiplication of 2 × 2 integer matrices requires eight integer multi-
plications he discovered, by chance, his famous equations. This legend could be right,
but in despite of this we should be able to answer the following question: How could a
mathematician discover those equations? Although this question is related to the anal-
ysis of mathematical creativity, which is by no means our theme, we would like to say
some things related to those questions, but we prefer to point out to the reader the very
interesting entry of wikipedia related to Strassen’s algorithm which tries to explain, from
a combinatorial point of view, the origin of Strassen’s equations [47].

Remark 4. Strassen’s algorithm can be employed for computing the product of two
square matrices with entries in an arbitrary ring; it includes the case of real and complex
matrices. Unfortunately it is not numerically well-behaved. It is weakly stable but it is
not strongly stable [22].
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2.2. A technical aside: Valiant’s context-free recognition algorithm

Valiant discovered the first context-free recognition algorithm that runs in subcubic time.
It can be considered as his first major result.

Let L be a context-free language; there exists a pushdown automaton M recognizing
L [12]. Can we use M as a recognition algorithm for L? It depends on M. If M
is deterministic then M yields a real-time recognition algorithm for L, while if M is
a nondeterministic pushdown automaton then M yields an unfeasible exponential time
recognition algorithm for L. Can language L be recognized in polynomial time? One
can use a polynomial time parser to recognize the language L. The history of polynomial
time parsers is long and rich. The first polynomial time parsers were discovered by
Kasami [17] and Earley [9]; those two parsers are cubic algorithms. The algorithm of
Valiant is obtained by cleverly reducing the context-free recognition problem to integer
matrix multiplication. This type of ingenious algorithmic reductions from combinatorial
to algebraic problems became, after studying Strassen’s work, one of the main themes of
his work.

Let us discuss the main ideas of Valiant’s algorithm. Let L be a context free language.
One can compute in subcubic time a Chomsky grammar2 G such that L (G) = L. Given
G = (N,Σ, S, P ), one can define a ring A (G) = (P (N) , ·,∪) , where · is the operation
defined by: given R,H ⊂ N we have that R ·H is equal to

{A ∈ N : ∃ (B ∈ R)∃ (C ∈ H) ((A → BC) ∈ P )} .

Given m ≥ 3 and given R1, R2, ..., Rm ∈ P (N), we set (in order to enforce associativity)

R1 · ... · Rm =
m−1⋃

i=1

((R1 · ... ·Ri) · (Ri+1 · ... ·Rm)) .

And given a ∈ Σ, we define Aa as {A ∈ N : (A → a) ∈ P} .

Fact. Let x ∈ Σn. It is easy to check (see reference [33]) that x ∈ L (M) if and only if
S ∈ Ax1 · Ax2 · ... ·Axn

.

Last fact is the core idea of Valiant’s algorithm. Valiant used this idea to design a
subcubic recognition algorithm for context-free languages. We fix a context-free language
L and we use the symbol V (L) to denote Valiant’s algorithm for L. Algorithm V (L) is
based on the following additional fact:

2Recall that a context-free grammar is a tuple G = (V, T, S,R) , where V is a finite set of variables
(nonterminal symbols), T is a finite set of constants (terminal symbols), S ∈ V is the initial variable
and R is a finite set of production rules which have the form X → Y , where X ∈ V and Y ∈ (V ∪ T )∗ .

Production rules can be employed to produce strings. Given w ∈ T ∗, if w can be obtained from the initial
symbol S by the application of a suitable sequence of production rules, then we say that w belongs to the
language L (G) , which is the context-free language generated by the context-free grammar G. Given a
context-free grammar G it is possible to compute a context-free grammar H such that L (G) = L (H) and
such that H is a Chomsky grammar [12]. A Chomsky grammar is a context-free grammar (V, T, S,R)
such that if X → Y is a production rule in R, then there exist R,T ∈ V and a ∈ T such that either
Y = RT or Y = a.
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Fact. Let Mx = [mij ]i,j≤n+1 be the square matrix defined by

mij =

{
0, if j �= i+ 1,

Axi
, if j = i+ 1;

then S ∈ Ax1 · Ax2 · ... · Axn
if and only if S ∈ m

(n)
1n+1, where m

(n)
1n+1 is the (1, n+ 1)

entry of the matrix (Mx)
n (the arithmetic operations are computed in the ring A (G)).

Algorithm V (L) works, on input x, as follows:

1. Compute the matrix Mx.

2. Compute, using Strassen’s algorithm and fast exponentiation, the matrix

(Mx)
n
=

[
m

(n)
ij

]

i,j≤n+1
.

3. If S ∈ m
(n)
1n+1 accept the input, otherwise reject.

The above description of the algorithm V (L) is a very brief description which highlights
the role played by Strassen’s algorithm. It can be argued that the knowledge of Strassen’s
algorithm was essential in the development of V (L) , but it should be clear that this work
of Valiant cannot be understood as a simple corollary to Strassen’s results.

3. The Summit: A medal and a discourse

Leslie Valiant received the Nevalina Medal in 1986. The Nevalina Medal is awarded each
four years along the international congress of mathematicians. Thus, one could think
that the Nevalina medal is the Field Medal of computer science and then it should be
considered as one of the highest honors achievable within this research community.

The awarding of this medal is one of the most important moments in Valiant’s career. It
is an interesting coincidence that Volker Strassen was the speaker in charge of presenting
Valiant’s main work. Thus, Strassen is connected to (at least) two of the most important
moments in Valiant’s career: the beginning and the summit.

After receiving his Ph.D degree Valiant quickly abandoned his first research field:
Context-free languages and parsing. The discovery of Strassen algorithm left an indelible
mark in Valiant. He switched to algebraic complexity, where he made many important
contributions. Some of those contributions explain the choice of Valiant as the second (in
the history) Nevalina prize holder; some of those contributions were analyzed by Strassen
in his discourse. We claim that the mathematical evolution of Valiant (from parsing to
algebraic complexity, from algebraic complexity to counting complexity, from counting
complexity to randomization, from randomization to the theory of parallel computation)
is determined, to some large extent, by his early discovery of Strassen’ s work. Let us
give a panoramical (and very succinct) review of Valiant’s work in the period 1974-1986.

1. Valiant introduced in [35] the fundamental concept of superconcentrator. Supercon-
centrators are graphs of very high connectivity closely related to expander graphs
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[7]. It is important to remark that the main goal of Valiant, when he introduced this
new concept, was proving that The Fast Fourier Transform Algorithm of Cooley
and Tukey [4] is optimal.

Let m be a positive integer. An m-superconcentrator is a directed graph with
m input and m output nodes, such that for every r < m any r input nodes
may be connected to any r output nodes in some order by r disjoint directed
paths. Are there superconcentrators with a linear number of edges? If there are
not superconcentrators of linear size then the discrete Fourier transform cannot
be computed in linear time, proving this would be a first major step towards an
optimality proof for the algorithm of Cooley and Tukey. Valiant observed that
any straight-line algorithm for computing the Discrete Fourier Transform of or-
der m yields an m-superconcentrator of a size proportional to the length of the
algorithm. Then we have that The Fast Fourier Transform Algorithm yields m-
superconcentrators of size O (mlogm) and any improvement of the Fast Fourier
Transform would lead to m-superconcentrators of still smaller size. Does the min-
imal size of m-superconcentrators grows like mlogm? By the previous remarks a
positive answer would yield an optimality proof for the Fast Fourier Transform. It
was the main goal of Valiant, but he proved the opposite: he proved that there
exist m-superconcentrators of size linear in m. Superconcentrators of linear size
have became useful tools in the information and communication sciences far beyond
their original purpose. We would like to mention that superconcentrators were the
technical basis for the first construction of error-correcting codes that are optimal
to within constant factors in all aspects: linear distance, constant rate, and linear-
time encoding and decoding [25]. Moreover, they lead to the expander revolution
in computer science which has been crucial in the research on derandomization and
in the development of distributed algorithms for sorting, searching, and routing,
among many other applications.

2. Valiant realized that most counting problems3 can be understood as evaluation
problems: Most counting problems reduce to the computation of algebraic objects
such as determinants, permanents or multivariate polynomials. Valiant also re-
alized that most evaluation problems are counting problems. Then, he developed
(almost simultaneously) Counting Complexity and his own theory of algebraic com-
putation, establishing a framework for understanding which algebraic formulas can
be evaluated efficiently. In analogy with the Boolean complexity classes P and
NP, his theory characterizes the difficulty of computing fundamental functions in

3Let L be a problem in NP . We know that there exists a polynomial function p (X) and a relation
R such that given x, an instance of L, we have that

x ∈ L if and only if there exists y such that |y|= p (|x|) and (x, y)∈ R.

The relation R allows one to associate to L the counting problem #L defined by

Input: x, where x is an instance of L.

Problem: compute |{y : |y| = p (|x|) and (x, y) ∈ R}| .

The problem #L is at least as hard as the problem L (if we can count the number of solutions (cer-
tificates) then we can decide if there exists at least one solution) and one could conjecture that those
two problems have the same complexity. Interesting enough it is not the case; Valiant proved that there
exist decision problems in NP such that their associated counting problems are very much harder [38].
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linear algebra, namely the Determinant and the Permanent. Those two lines of
research, opened by Valiant, set the stage for some of the most exciting subsequent
developments in computational complexity, such as the development of interactive
proofs for problems beyond NP: his definition of the class #P [37], his proof that
the Permanent is complete for this class [38], and the special properties of the Per-
manent (such as random-self-reducibility) played a key role in unveiling the power
of interactive proofs, PCPs, program checking and more.

Finally, we would like to mention that the research on counting problems leads Valiant
to study randomized algorithms. He discovered (together with Vijay Vazirani and Mark
Jerrum) an important connection between the existence of sampling algorithms and the
existence of approximation schemes [16]. This connection is the ground basis of The
Markov Chain Monte Carlo Counting Method, which is the most robust technique dis-
covered up to the date for the design of randomized algorithms for approximate counting
[14].

These three important developments are not a full account of the work developed by
Valiant in the period 1974-1986, but they are three highlights of this work. We would
like to notice that all those three lines of research are related to Strassen’s work, given
that they originated in the study of algebraic-numerical problems. We conjecture that
Valiant arrived to the study of randomized algorithms via counting complexity, and that
he arrived to the study of counting problems via algebraic complexity, which in turn
gained his attention thanks to the study of Strassen’s work. Thus, we claim that most
of the breakthroughs achieved by Valiant in this period are originated, to some extent,
in his deep knowledge of Strassen’s work.

4. Hopefully, it is not the end: going back to the roots.

Valiant developed a fruitful an manyfaced work in complexity theory in the period 1986-
2000 (after the nevalina prize):

He introduced the PAC model of machine learning [24]. This model has had enor-
mous influence on artificial intelligence and many areas of computing practice, such
as natural language processing, handwriting recognition, and computer vision.

He studied the different models of parallel and distributed computing and he made
important contributions in this field. He discovered a randomized routing algorithm
which can be efficiently used to minimize congestion effects in communication net-
works [40]. Randomized routing provides a way of avoiding congestion in sparse
networks, something unavoidable for any deterministic algorithm. This algorithm
and the beauty subsequent analysis of it exposed how randomization can (should
be) used in the design, analysis and administration of communication networks.
His novel ideas and the challenges he posed for parallel computing [39] shaped the
direction of the field.

And then, with the beginning of the century, he switched to computational neurosciences
focusing on understanding memory and learning. [41, 42]. Although most of his later
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work is not directly related to complexity theory, he introduced in this period an impor-
tant concept that belongs to this area of computer science: the concept of holographic
algorithm [44, 45].

Holographic algorithms are counting algorithms which resemble the classical Kasteleyn
algorithm [18] for the counting of perfect matchings in planar graphs4. It is so, and it
should be so, given that holographic algorithms (also called holographic reductions) are
used to reduce a given (and seemingly intractable) counting problem to the counting of
perfect matchings in planar graphs. However, the reductions are holographic, namely
they are many-to-many (as opposed to the standard many-to-one reductions which are
commonly used), and seem to use cancellation in a mysterious way. We would like to
discuss an important aspect of this theory that is related to the main theme of this
article: This last theory of Valiant owes a big debt to Strassen.

Valiant arrived to the concept of holographic algorithms via quantum complexity. He
began studying classical circuits which can be employed to simulate quantum circuits
[43]. Let us quote Valiant [44]:

Holographic algorithms are inspired by the quantum computational model [Deutsch, 1985;
Bernstein and Vazirani, 1997]. However, they are executable on classical computers and
do not need quantum computers. They can be understood best, perhaps, in terms of can-
cellations in classical computation. Strassen’s algorithm for matrix multiplication
[Strassen, 1969] offers an early striking example of the power of computa-
tions that compute extraneous terms only to cancel them later. It is known that
cancellations can provide exponential speedups in computations, and in the several cases
that have been analyzed, linear algebra algorithms for computing the determinant play a
major role [Valiant, 1980; Jerrum and Snir, 1982; Tardos, 1987].

Also, as Valiant says, Strassen’s algorithm was an important source of inspiration for
the discovery of holographic algorithms, the last (up to the date) work of Valiant on
complexity theory (and hopefully not the very last).

5. Concluding remarks

It has been said that we are dwarfs standing on the shoulders of giants. Leslie Valiant is a
gigantic dwarf who found in Strassen’s shoulders a very fine standpoint. We have briefly
reviewed three important moments in Valiant career: the beginning, the summit and his
last works on complexity theory. We have observed that the influence of Strassen’s work
is ubiquitous and that this influence can be easily traced.

Acknowledgement. Thanks to Universidad Nacional de Colombia, thanks to DIF
Ciencias R.P. 16860.

4Kasteleyn algorithm reduces the counting of perfect matchings to the computation of Pfaffian de-
terminants. In the planar case Pfaffian orientations can be computed in polynomial time, but it is not
longer true in the nonplanar case: Recall that Valiant proved that the counting of perfect matchings is
#P complete [38]
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